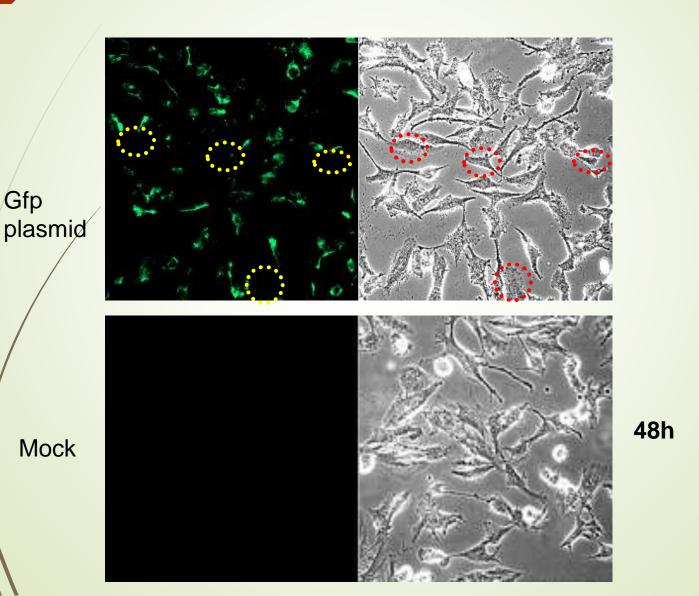
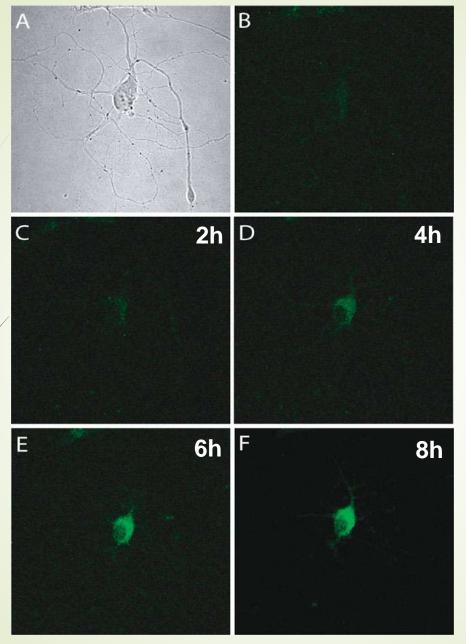
Gene Expression in Mammalian Cells and its Applications

Date: July 21, 2016


Speaker: 轉譯醫學研究中心


方瓊瑤

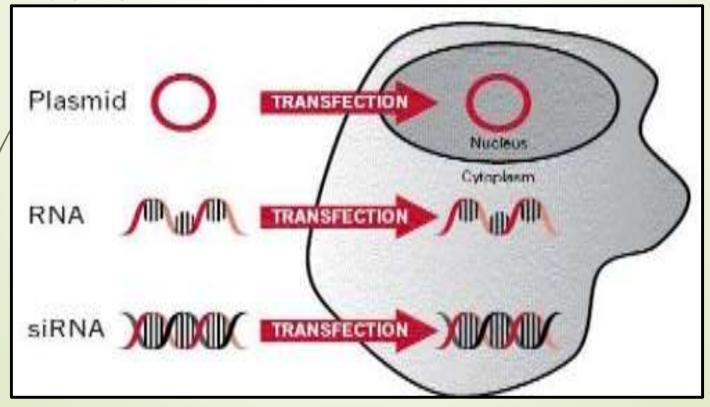
1

Gfp

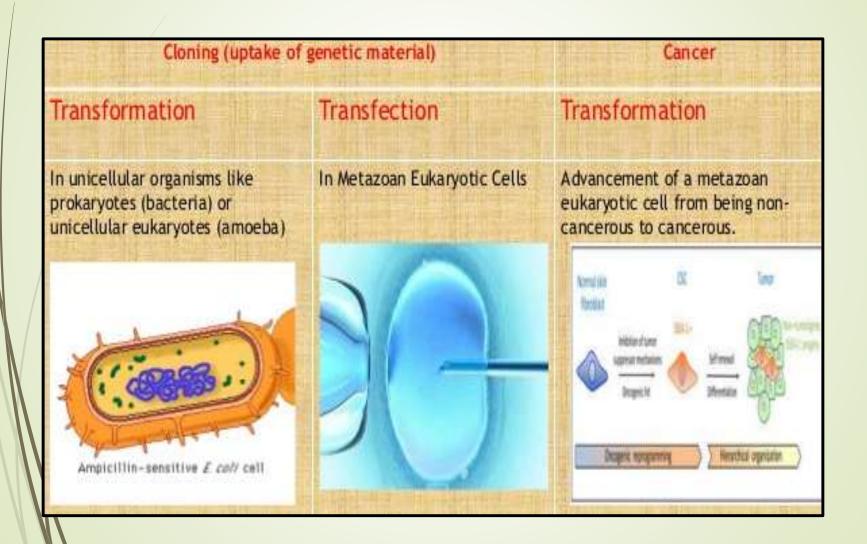
Gfp reporter plasmids transfect to human neuroblastoma cells

Gria4: L-glutamategated ion channels that mediate fast synaptic excitatory **neurotransmission**

Micrographs of the rat hippocampal neuron lipotransfected with in-vitro-transcribed rat Gria4-GFP mRNA


Anal Bioanal Chem (2010) 397:3173-3178

Presentation Overview


- Terminology
- Factors Affecting Transfection
- Transfection Workflow
- Common Transfection Methods

Transfection

transporting DNA, RNA or macromolecules into an eukaryotic cells

Transfection vs. Transformation

Factors Affecting Transfection

Cell Health

- Cells should be grown in appropriate medium with all necessary factors
- Cultures must be free of contamination.
- Fresh medium must be used if it contains chemically unstable components, such as thiamine
- Cells should be incubated at 37°C with CO₂ supplied at the correct percentage (5–10%) and 100% relative humidity
- Cells should be maintained in log phase growth

Factors Affecting Transfection

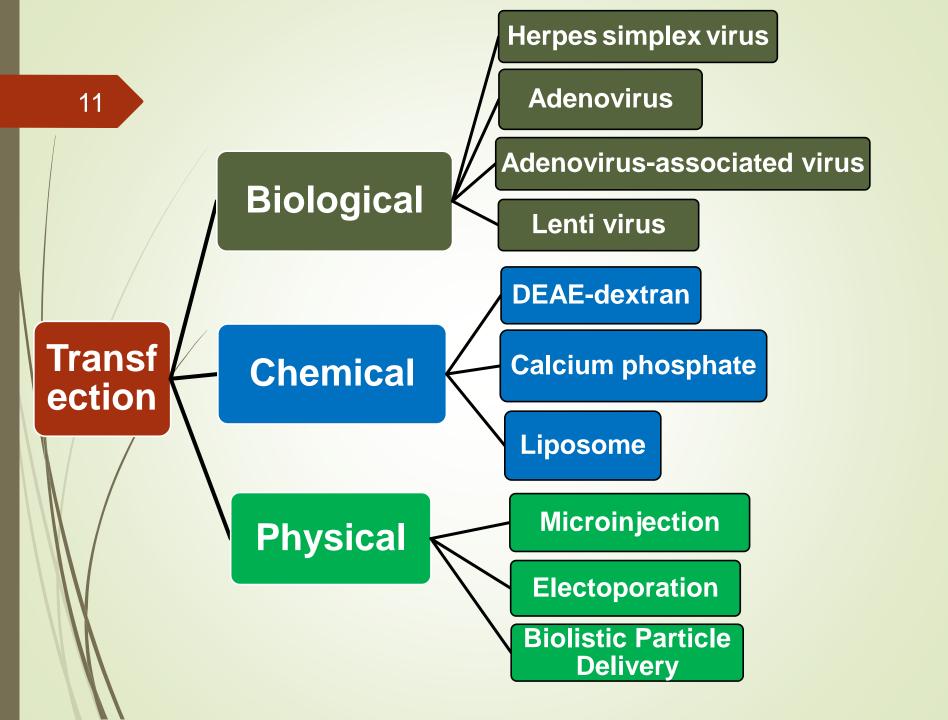
Cell Culture

Confluency and Growth Phase

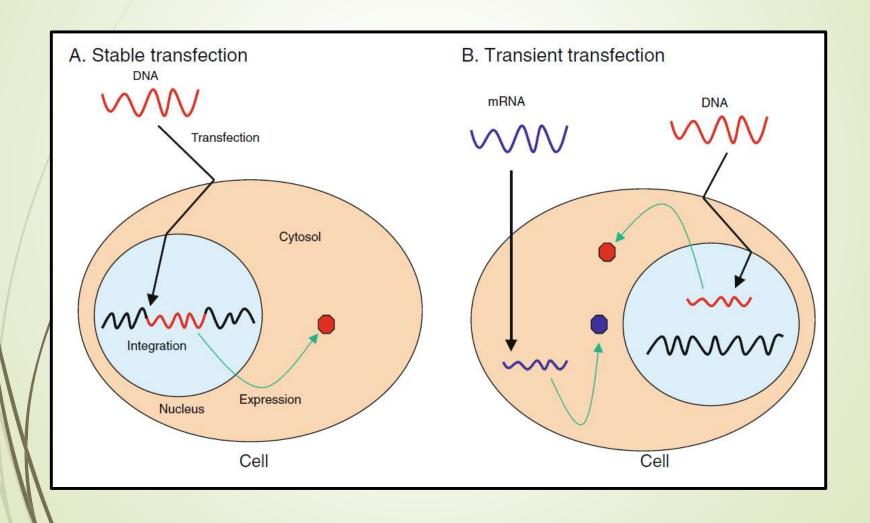
- Cells should be transfected at 40–80% confluency (cell type dependent)
 - Too few cells cause cell cultures to grow poorly without cell-to-cell contact
 - Too many cells result in contact inhibition, making cells resistant to uptake of DNA and other macromolecules
- Actively dividing cells take up DNA better than quiescent cells (breakdown and perforation
 of the nuclear membrane during mitosis enable nuclear delivery)

Number of Passages for Primary Cells

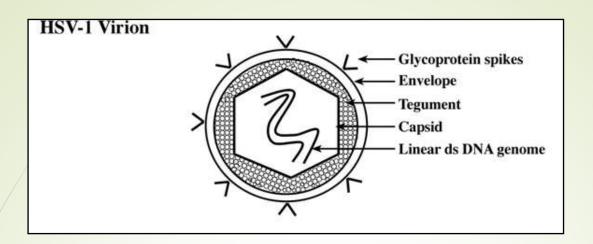
- The number of passages should be low (<50)
- The number of passages for cells used in a variety of experiments should be consistent
- Cell characteristics can change over time with immortalized cell lines and cells may not respond to the same transfection conditions
- Cells may not respond to the same transfection conditions after repeated passages


Factors Affecting Transfection

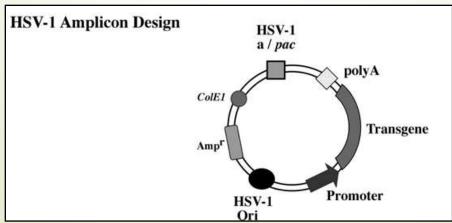
DNA Quality and Quantity

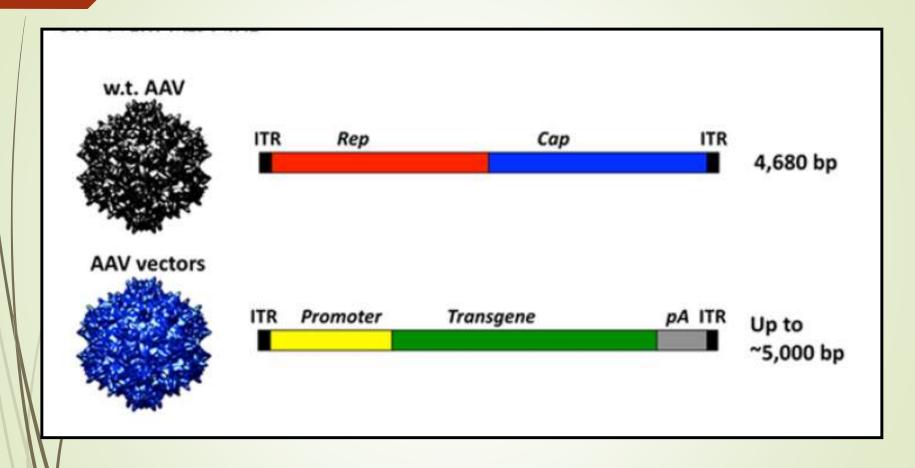

- Use high-quality plasmid DNA that is free of proteins, RNA, and chemicals for transfections;
 endotoxin removal should be part of the preparation procedure
- Typically, DNA is suspended in sterile water or TE buffer to a final concentration of 0.2–1 mg/ml
- The optimal amount of DNA to use in the transfection will vary widely depending upon the type of DNA, transfection reagent/method, target cell line, and number of cells

Transfection Workflow

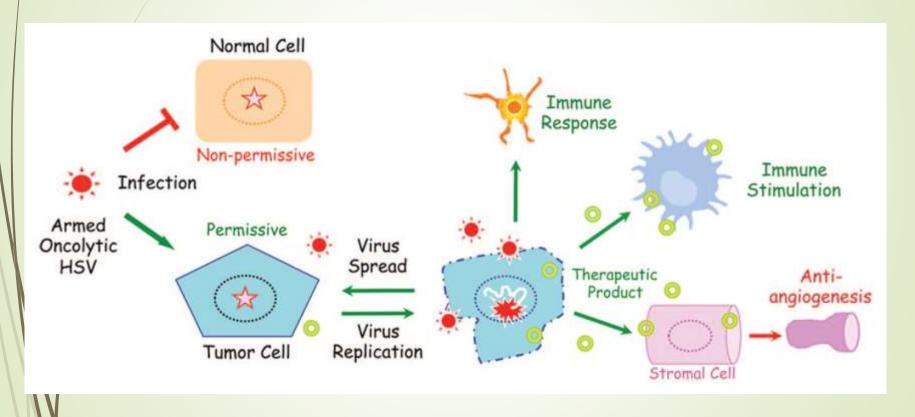

Two Different Transfections

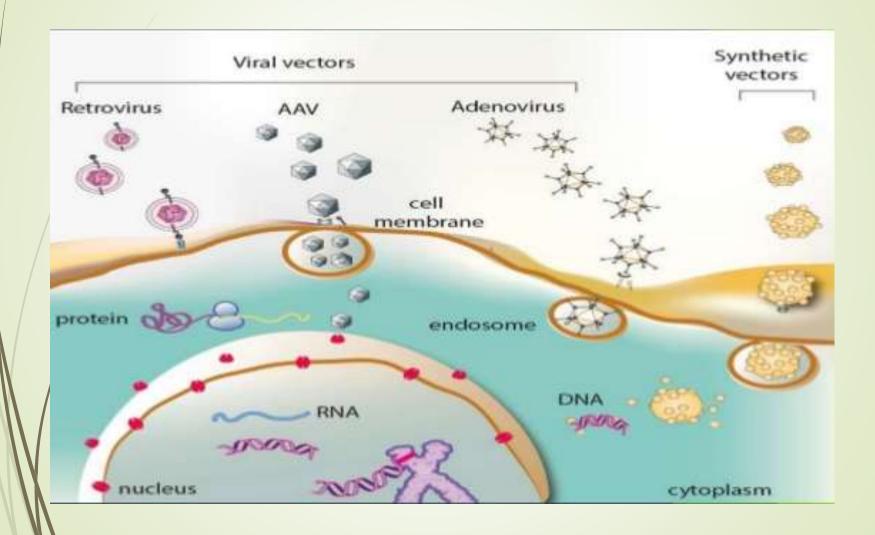



Class	Methods	Advantages	Disadvantages	Examples
Biological	Virus-mediated	- High-efficiency	- Potential hazard to laboratory personnel	Herpes simplex virus, Adeno virus, Adeno-associated virus,
		- Easy to use		Vaccinia virus, Sindbis virus
		 Effective on dissociated cells, slices, and in vivo 	- Insertional mutagenesis	
			- Immunogenicity	
			- DNA package size limit	
Chemical	Cationic polymer	- No viral vector	- Chemical toxicity to some cell types	DEAE-dextran, polyethyleneimine, dendrimer, polybrene, calcium
	Calcium phosphate	- High-efficiency	Variable transfection efficiency by cell type or condition	phosphate, lipofectin, DOTAP, lipofectamine, CTAB/DOPE, DOTMA
	 Cationic lipid 	- Easy to use	- Hard to target specific cells	
		 Effective on dissociated cells and slices Plenty of commercially available products No package size limit 		
	Direct injection	- Simple principle and straightforward	- Needs special instruments	Micro-needle, AFM tip, Gene Gun, Amaxa Nucleofector,
	Biolistic particle delivery	- Physical relocation of nucleic acids into cell	- Vulnerable nucleic acids	phototransfection, Magnetofection
	Electroporation	- No need for vector	 Demands experimenter skill, laborious procedure 	
	Laser-irradiation	- Less dependent on cell type and condition		
	 Sonoporation 	- Single-cell transfection		
	Magnetic nanoparticle			


Viruses in Use

Viral Vector	DNA Insert Size	Expression	Pitfalls
Retro viral	8 kb	Stable	Random insertion site
Lenti viral	9 kb	Stable	Random insertion site
Adeno Virus	8 kb	Transient	Highly immunogenic
Adeno associated Virus	5 kb	Stable, site specific location	Requires helper virus and difficult to remove
Herpes Simplex Virus	30-40 kb	Transient	No gene expression during latent infection
Vaccina Virus	25 kb	Transient	Potential cytopathic effects

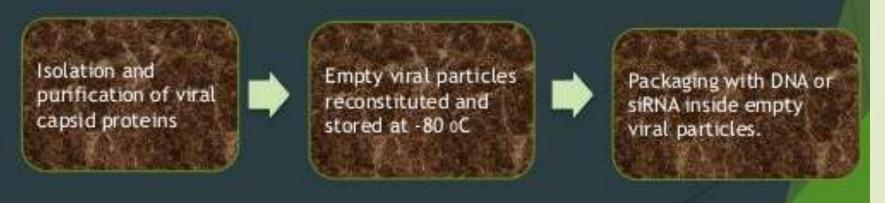



Armed oHSV used in specific targeting cancer cell

Viral Gene Deletions to Achieve Tumor Selective Replication

Table 2 Examples of vi	al gene deletions to achieve	tumor-selective replication
------------------------	------------------------------	-----------------------------

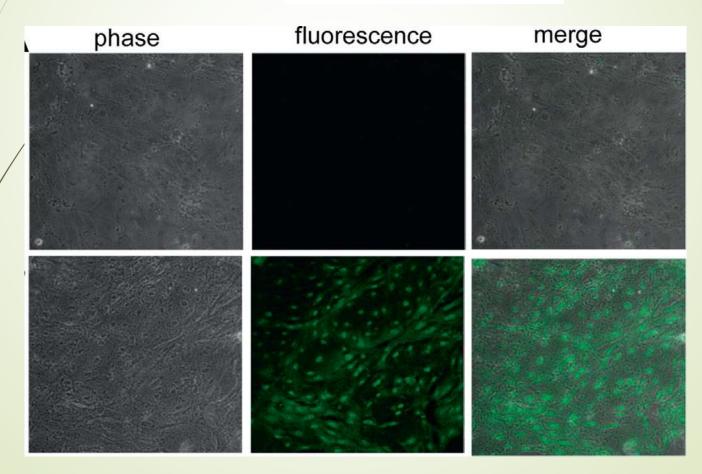
Parental strain	Agent	Genetic alteration	Genetic/phenotypic target within tumours	In clinical trials
Adenovirus	ONYX-015	E1B-55kd deletion	p53 null/mutant or/and inactivated p53- pathway	1-111
	$Ad-\Delta 24$	E1A CR2 deletion	pRb null/mutant or/and loss of cell cycle control	No
	CB-1	E1A CR2 deletion; E1B-55kd deletion	pRb and p53 defective pathways or/and loss of cell cycle control	No
	d/922-947	E1A CR2 deletion	pRb null/mutant or/and loss of cell cycle control	No
	d/331	VA-1 gene deletion	Ras-activated pathway	No
Herpes	d/sptk	Thymidine kinase gene deletion	Replication	No
simplex	R3616	Deletion of both y34.5 genes	Loss of neurovirulence	No
virus-1	HrR3	ICP6 gene deletion	Replication	No
	G207	Deletion of both y34.5 genes; ribonucleotide reductase disruption	Replication; loss of neurovirulence	1–11
	NV1020	Deletion of one γ34.5 gene; deletion in tk gene; insertion of exogenous copy of tk gene	Replication, loss of neurovirulence	Ī
Vaccinia	VV-TK-	Thymidine kinase gene deletion	Replication	No
virus	VV-SPI-1/2-	Deletion of SPI-1 and SPI-2 genes	Replication	No
	WDD	Thymidine kinase gene deletion; deletion of VGF gene	Replication	No
Polio virus	PV1(RIPO)	IRES element replaced by IRES from HRV2	Loss of neurovirulence; replication	No
Influenza virus	IVA-NS1	NS1 gene deletion	IFN-pathway deficiency	No

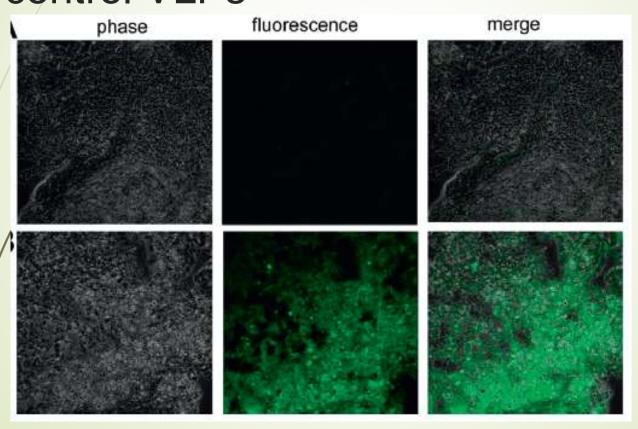

HSV-based vectors for neurological diseases

Pathological disturbances	Application	Genes or proteins involved	Mechanism	Ref.
Neurodegenerative disorders	Alzheimer's disease	NMDAR-NR1	Relationship between NMDAR and Aβ oligomers. Silencing of NR1-NMDAR subunit expression through delivery of NR1 antisens sequences	Decker (2010)
		Aβ peptide Tau, Alpha-synuclein,	Vaccination against $A\beta$ peptides to prevent or remove peptide deposition.	Frazer (2008), Peruzzi (2009)
	Parkinson's Disease	TH, GTP-CH-I, AADC, VMAT-2 Hexokinase II	Gene replacement in 6-hydrodopamine-lesioned or rotenone- treated rats	Sun (2004), Corona (2010)
	Narcolepsy	Pre-pro-orexin	Gene replacement in a KO model for orexin	Liu (2008)
Ataxias	Friedreich's ataxia	FRDA locus Frataxin	Gene replacement	Gimenez-Cassina (2011), Cortes (2006, 2008)
	Ataxia telangectasia	ATM cDNA		
Neuroprotection	Different types of neuroprotection	BDNF, NT-3 GDNF, Bcl-2, HSP72 Catalase, Peroxidase	Gene overexpression or replacement in lesioned or drug- treated model animals	Garrido (1998), Bowers (2002), Su (2005), Arvanian (2006), Hoehn (2001), Zemliak (2006)
Cancer	Glioblastomas	Prodrugs HSV-1 ICP0	Cell toxicity	Rainov (1998), Cuchet (2005), Hoshi (2000), Ho (2010)
		Inhibitors of metalloproteinases	Inhibition of invasive activity	Saydam (2005), Shah (2003, 2005 Ho (2006, 2010)
		EGFR FasL, FADD, TRAIL	Gene silencing (RNAi) Induction of apoptosis in cancer cells	
	Shwannomas	Caspase-1	Selective apoptosis in cells infected with amplicons expressing the apoptosis-inducing enzyme, caspase-1 (ICE) driven by the Schwann cell-specific promoter P0	Prabhakar (2010)
Behavioral traits. Learning and	Inhibitory avoidance.	NMDA-NR1	Inhibition of NR1 subunit expression	Adrover (2003), Cheli (2006)
memory	Auditory reversal. Fear conditioning.	PKC beta II GluR1	Activation of PKC pathways AMPAR mobilization	Neill (2001)
	Social transmission of food preference; Anxiety.	CREB	Manipulation of cAMP function in different regions of the brain	Rumpel (2005)
	Alcoholism.	GABA	Inhibition (iRNA) of GABA expression in the amygdala	Han (2007, 2008), Brightwell (2005, 2008), Barrot (2005), Liu (2011)

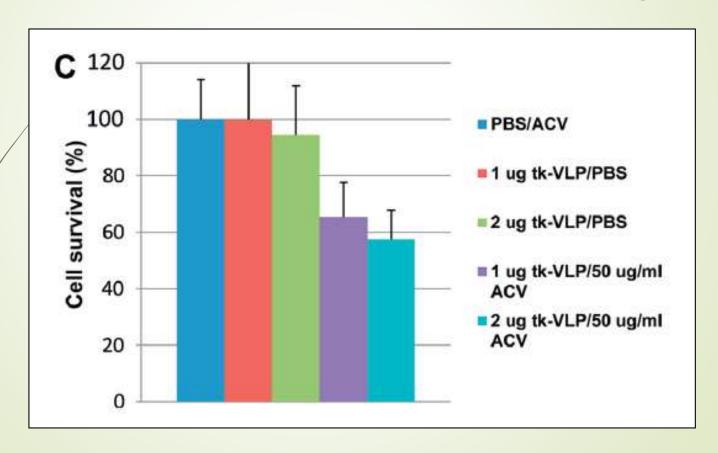
Virus like particles(vlp)

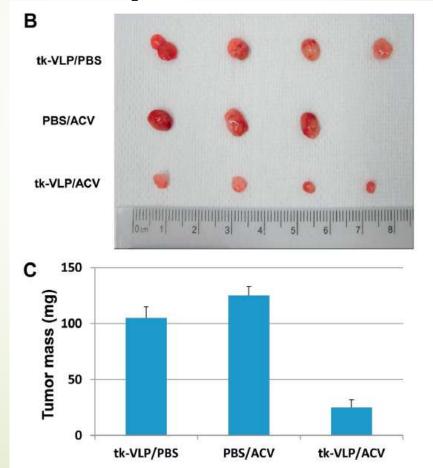
Alternative approach to classical methods

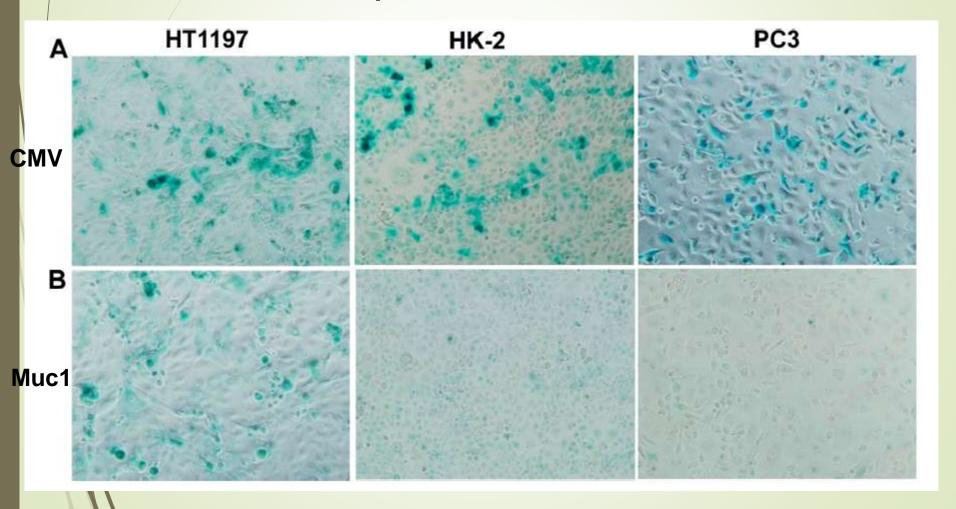

- Viral capsid- without viral genetic information.
 Eg: Pappilloma viruses: L1 and L2 proteins.
- Predominantly use vaccination Gene delivery - human polymo JC virus, murine polymovirus, pappilomaviruses and AAV- based VLPs.

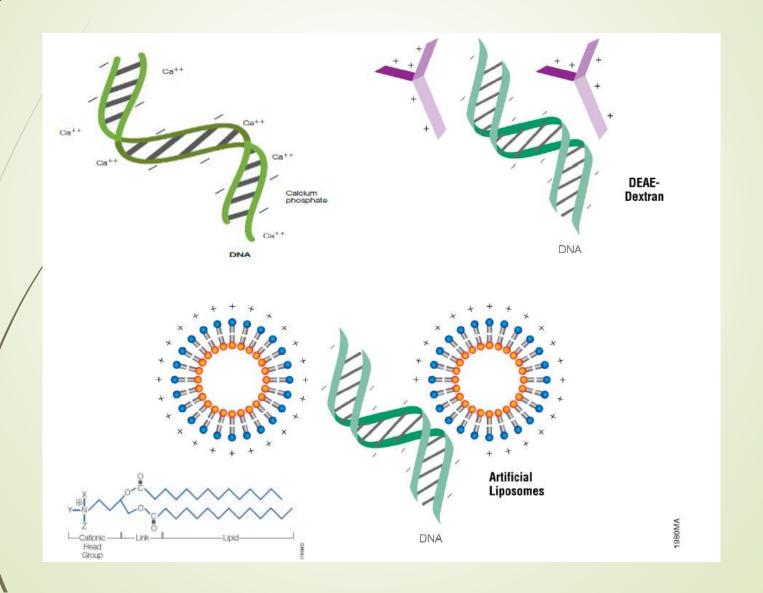

Inhibition of Human Bladder Cancer Growth by a Suicide Gene Delivered by JC Polyomavirus Virus-like Particles in a Mouse Model

Chiung-Yao Fang,* Yi-Da Tsai,* Mien-Chun Lin, Meilin Wang, Pei-Lain Chen, Chun-Nun Chao, Yih-Leh Huang, Deching Chang† and Cheng-Huang Shen†


THE JOURNAL OF UROLOGY Vol. 193, 2100-2106, June 2015


Gene transduction activity of JCPy VLPs in nude mice inoculated subcutaneously with HT-1197 cells and injected with control VLPs


Cytotoxic effect of tk-VLPs on HT-1197 human bladder carcinoma cells infected with tk-VLPs and treated with ACV


Monitored tumor nodule growth inhibition by tk-VLPs in mice bearing HT-1197 derived tumors injected with tk-VLPs or PBS followed by intraperitoneal injection of ACV or PBS

Selective gene transduction by JCPy VLPs in human bladder cancer HT-1197, kidney HK-2 and prostate cancer PC3 cells

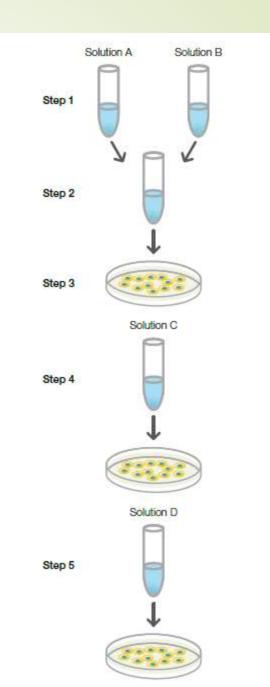
Chemical Transfection

DEAE-Dextran

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} CH_2-CH_3 \\ \end{array}\\ \end{array}\\ \begin{array}{c} CH_2-CH_3 \\ \end{array}$$

Method Overview

Solution A: DNA (~1-5 µg/ml) diluted into 2 ml of growth

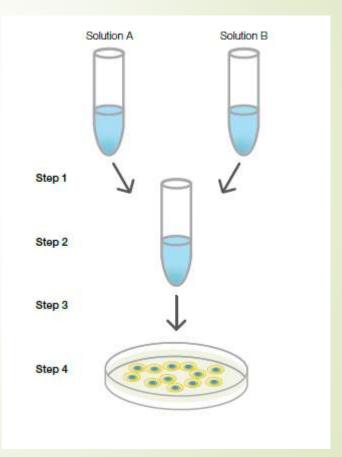

medium with serum containing chloroquine

Solution B: DEAE-dextran solution (~50-500 µg/ml)

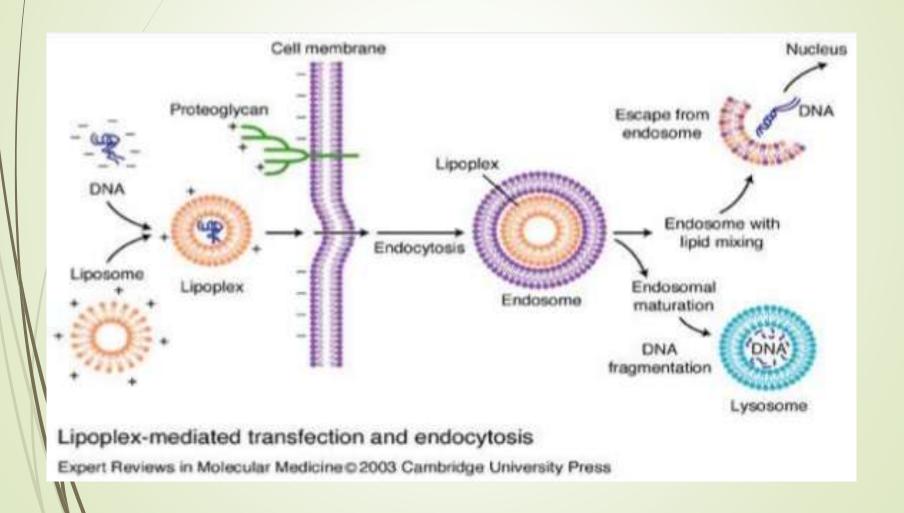
Solution C: ~5 ml of DMSO

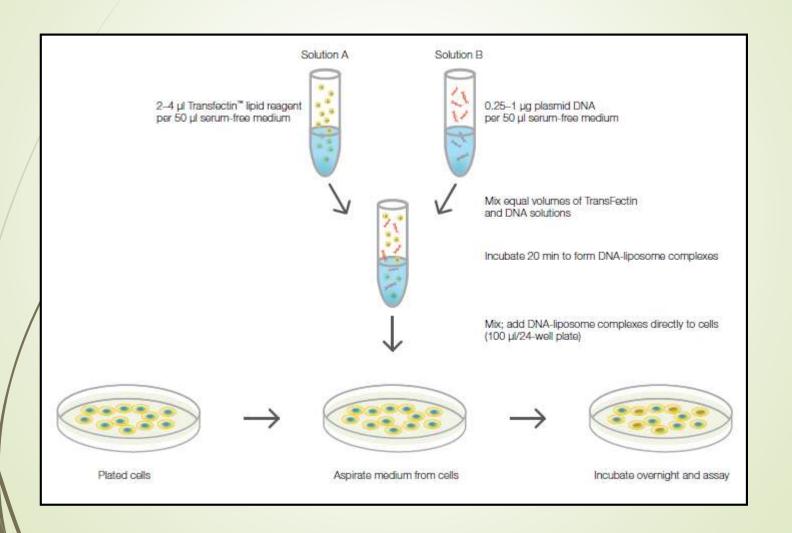
Solution D: Complete growth medium

- 1 Add solution A to solution B, then mix gently.
- 2 Aspirate cell medium and apply the mixed A and B solutions to the subconfluent cell culture. Incubate the DNA mixture for -4 hr.
- 3 Aspirate supernatant.
- 4 Add solution C to Induce DNA uptake.
- 5 Remove DMSO and replace with complete growth medium; assay for transient gene expression.


Calcium Phosphate Co-Precipitation

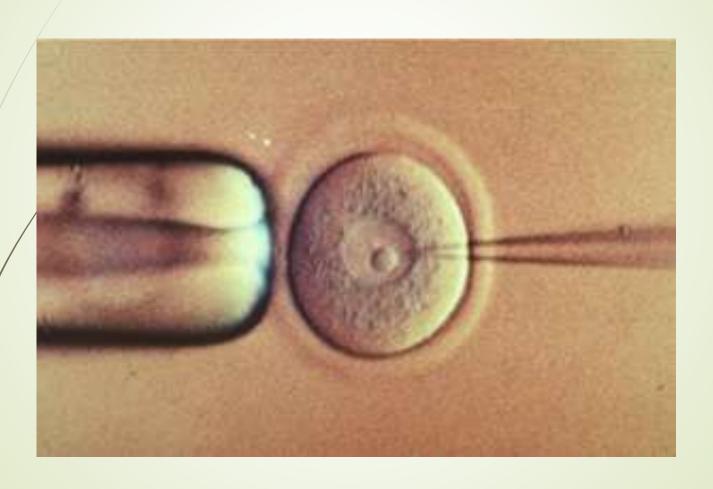
Method Overview

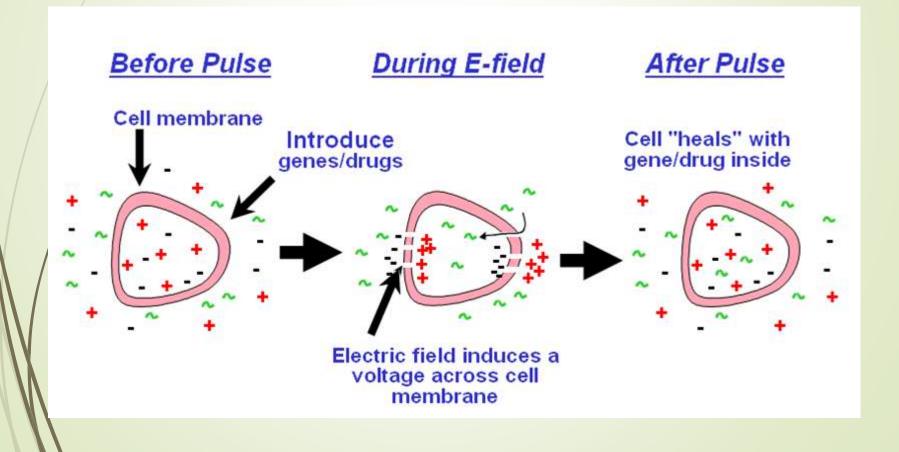

Solution A: DNA in calcium solution


Solution B: 2x Hanks buffered saline solution

- 1 Add solution A to solution B while vortexing.
- 2 Incubate 20–30 min. Apply the solution to a subconfluent cell culture.
- 3 Incubate 2–12 hr. Replace the solution with complete growth medium.
- 4 Assay for transient gene expression or begin selection for stable transformation time.

Liposomes and lipoplexes




Physical Methods

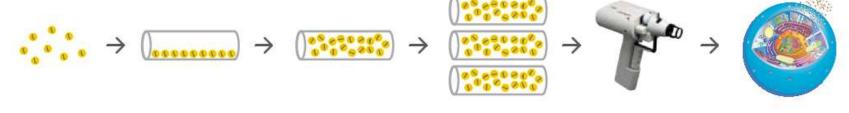
- Direct microinjection
- Electroporation
- Biolistic particle delivery

Microinjection

Electroporation

Biolistic Particle Delivery

- For in situ, in vivo, and in vitro transformations
- Applications for animals, plants, cell culture, nematodes, yeast, and bacteria
- Pressure range 100–600 psi enables fine-tuning of penetration
- Highly portable can be used in the field
- Small target area for accurate targeting



PDS-1000/He'" Biolistic Particle Delivery System

- For in vitro, ex vivo, and in vivo (for some plants and microbes)
 transformations
- Applications for animal cell and organ cultures, plant cell cultures and explants, pollen, insects, algae, fungi, and bacteria
- Pressure range 450–2,200 psi gives flexibility and penetration ideal for plant applications
- Large target area more cells can be transformed

Helios® Gene Gun — Process Overview

- Precipitate DNA onto gold particles.
- 2 Load DNA/gold into tubing.
- 3 Rotate tubing to coat DNA gold over inside surface.
- 4 Cut tubing into cartridges.
- 5 Load cartridges into gene gun.
- 6 Deliver DNA into target cells.

 Step 1
 Step 2
 Step 3
 Step 4
 Step 5
 Step 6

PDS-1000/He™ System — Process Overview

- 1 DNA-coated gold particles (microcarrier) are spread over the central area of a thin plastic disk (macrocarrier).
- 2 Disk loaded with the DNA-gold particles is placed into a holder inside the PDS-1000/He system.
- 3 The system uses high-pressure helium, released by a rupture disk, and partial vacuum to propel the macrocarrier loaded with microcarrier toward the target cells.
- 4 Macrocarrier is stopped after a short distance by a stopping screen.
- 5 DNA-coated gold particles continue travelling toward the target to penetrate the cells.
- 6 Sample chamber is subjected to partial vacuum, from 15 to 29 inches of mercury, depending on the target cells.

Take Home Message

Class	Methods	Advantages	Disadvantages	Examples
Biological	Virus-mediated	- High-efficiency	- Potential hazard to laboratory personnel	Herpes simplex virus, Adeno virus, Adeno-associated virus,
		- Easy to use		Vaccinia virus, Sindbis virus
		- Effective on dissociated cells, slices, and in vivo	- Insertional mutagenesis	
			- Immunogenicity	
			- DNA package size limit	
Chemical	Cationic polymer	- No viral vector	- Chemical toxicity to some cell types	DEAE-dextran, polyethyleneimine, dendrimer, polybrene, calcium
	Calcium phosphate	- High-efficiency	Variable transfection efficiency by cell type or condition	phosphate, lipofectin, DOTAP, lipofectamine, CTAB/DOPE, DOTMA
	 Cationic lipid 	- Easy to use	- Hard to target specific cells	
		Effective on dissociated cells and slices Plenty of commercially available products No package size limit		
Physical	• Direct injection	- Simple principle and straightforward	- Needs special instruments	Micro-needle, AFM tip, Gene Gun, Amaxa Nucleofector,
	 Biolistic particle delivery 	Physical relocation of nucleic acids into cell	- Vulnerable nucleic acids	phototransfection, Magnetofection
	Electroporation	- No need for vector	- Demands experimenter skill, laborious procedure	
	Laser-irradiation	- Less dependent on cell type and condition		
	 Sonoporation 	- Single-cell transfection		
	Magnetic nanoparticle			

謝謝聆聽 敬請指教